Package mvpa :: Package clfs :: Module kernel
[hide private]
[frames] | no frames]

Module kernel

source code

Kernels for Gaussian Process Regression and Classification.
Classes [hide private]
  Kernel
Kernel function base class.
  KernelConstant
The constant kernel class.
  KernelLinear
The linear kernel class.
  KernelExponential
The Exponential kernel class.
  KernelSquaredExponential
The Squared Exponential kernel class.
  KernelMatern_3_2
The Matern kernel class for the case ni=3/2 or ni=5/2.
  KernelMatern_5_2
The Matern kernel class for the case ni=5/2.
  KernelRationalQuadratic
The Rational Quadratic (RQ) kernel class.
Variables [hide private]
  _DEV__DOC__ = ...
  kernel_dictionary = {'constant': KernelConstant, 'linear': Ker...

Imports: N, InvalidHyperparameterError, squared_euclidean_distance, debug, warning


Variables Details [hide private]

_DEV__DOC__

Value:
"""
Make use of Parameter Collections to keep parameters of the
kernels. Then we would get a uniform .reset() functionality. Now reset
is provided just for parts which are failing in the unittests, but
there is many more places where they are not reset properly if
classifier gets trained on some new data of different dimensionality
"""

kernel_dictionary

Value:
{'constant': KernelConstant, 'linear': KernelLinear, 'exponential': Ke\
rnelExponential, 'squared exponential': KernelSquaredExponential, 'Mat\
ern ni=3/2': KernelMatern_3_2, 'Matern ni=5/2': KernelMatern_5_2, 'rat\
ional quadratic': KernelRationalQuadratic}