Package mvpa :: Package clfs :: Module kernel :: Class KernelRationalQuadratic
[hide private]
[frames] | no frames]

Class KernelRationalQuadratic

source code


The Rational Quadratic (RQ) kernel class.

Note that it can handle a length scale for each dimension for Automtic Relevance Determination.

Instance Methods [hide private]
 
__init__(self, length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs)
Initialize a Squared Exponential kernel instance.
source code
 
__repr__(self)
repr(x)
source code
 
compute(self, data1, data2=None)
Compute kernel matrix.
source code
 
gradient(self, data1, data2)
Compute gradient of the kernel matrix. A must for fast model selection with high-dimensional data.
source code
 
set_hyperparameters(self, hyperparameter)
Set hyperaparmeters from a vector.
source code

Inherited from Kernel: compute_gradient, compute_lml_gradient, compute_lml_gradient_logscale, reset

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __str__, __subclasshook__

Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

__init__(self, length_scale=1.0, sigma_f=1.0, alpha=0.5, **kwargs)
(Constructor)

source code 
Initialize a Squared Exponential kernel instance.
Parameters:
  • length_scale (float OR numpy.ndarray) - the characteristic length-scale (or length-scales) of the phenomenon under investigation. (Defaults to 1.0)
  • sigma_f (float) - Signal standard deviation. (Defaults to 1.0)
  • alpha, float - The parameter of the RQ functions family. (Defaults to 2.0)
Overrides: object.__init__

__repr__(self)
(Representation operator)

source code 
repr(x)
Overrides: object.__repr__
(inherited documentation)

compute(self, data1, data2=None)

source code 
Compute kernel matrix.
Parameters:
  • data1 (numpy.ndarray) - data
  • data2 (numpy.ndarray) - data (Defaults to None)
Overrides: Kernel.compute

set_hyperparameters(self, hyperparameter)

source code 

Set hyperaparmeters from a vector.

Used by model selection. Note: 'alpha' is not considered as an hyperparameter.