The Squared Exponential kernel class.
Note that it can handle a length scale for each dimension for
Automtic Relevance Determination.
|
__init__(self,
length_scale=1.0,
sigma_f=1.0,
**kwargs)
Initialize a Squared Exponential kernel instance. |
source code
|
|
|
reset(self)
Resets the kernel dropping internal variables to the original values |
source code
|
|
|
|
|
|
|
|
|
compute_lml_gradient(self,
alphaalphaT_Kinv,
data)
Compute grandient of the kernel and return the portion of
log marginal likelihood gradient due to the kernel.
Shorter formula. Allows vector of lengthscales (ARD). |
source code
|
|
|
compute_lml_gradient_logscale(self,
alphaalphaT_Kinv,
data)
Compute grandient of the kernel and return the portion of
log marginal likelihood gradient due to the kernel.
Hyperparameters are in log scale which is sometimes more
stable. Shorter formula. Allows vector of lengthscales (ARD). |
source code
|
|
|
_setlength_scale(self,
v)
Set value of length_scale and its _orig |
source code
|
|
Inherited from Kernel :
compute_gradient
Inherited from object :
__delattr__ ,
__format__ ,
__getattribute__ ,
__hash__ ,
__new__ ,
__reduce__ ,
__reduce_ex__ ,
__setattr__ ,
__sizeof__ ,
__str__ ,
__subclasshook__
|