Multivariate Pattern Analysis in Python |
This is an example demonstrating various kernel implementation in PyMVPA.
from mvpa.suite import *
from mvpa.clfs.kernel import *
import pylab as P
# N.random.seed(1)
data = N.random.rand(4, 2)
for kernel_class, kernel_args in (
(KernelConstant, {'sigma_0':1.0}),
(KernelConstant, {'sigma_0':1.0}),
(KernelLinear, {'Sigma_p':N.eye(data.shape[1])}),
(KernelLinear, {'Sigma_p':N.ones(data.shape[1])}),
(KernelLinear, {'Sigma_p':2.0}),
(KernelLinear, {}),
(KernelExponential, {}),
(KernelSquaredExponential, {}),
(KernelMatern_3_2, {}),
(KernelMatern_5_2, {}),
(KernelRationalQuadratic, {}),
):
kernel = kernel_class(**kernel_args)
print kernel
result = kernel.compute(data)
# In the following we draw some 2D functions at random from the
# distribution N(O,kernel) defined by each available kernel and
# plot them. These plots shows the flexibility of a given kernel
# (with default parameters) when doing interpolation. The choice
# of a kernel defines a prior probability over the function space
# used for regression/classfication with GPR/GPC.
count = 1
for k in kernel_dictionary.keys():
P.subplot(3,4,count)
# X = N.random.rand(size)*12.0-6.0
# X.sort()
X = N.arange(-1,1,.02)
X = X[:,N.newaxis]
ker = kernel_dictionary[k]()
K = ker.compute(X,X)
for i in range(10):
f = N.random.multivariate_normal(N.zeros(X.shape[0]),K)
P.plot(X[:,0],f,"b-")
P.title(k)
P.axis('tight')
count += 1
if cfg.getboolean('examples', 'interactive', True):
# show all the cool figures
P.show()
See also
The full source code of this example is included in the PyMVPA source distribution (doc/examples/kerneldemo.py).