Home | Trees | Indices | Help |
|
---|
|
1 # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- 2 # vi: set ft=python sts=4 ts=4 sw=4 et: 3 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 4 # 5 # See COPYING file distributed along with the PyMVPA package for the 6 # copyright and license terms. 7 # 8 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 9 """Unit tests for PyMVPA least angle regression (LARS) classifier""" 10 11 from mvpa import cfg 12 from mvpa.clfs.lars import LARS 13 from scipy.stats import pearsonr 14 from tests_warehouse import * 15 from mvpa.misc.data_generators import normalFeatureDataset 161867 6820 # not the perfect dataset with which to test, but 21 # it will do for now. 22 #data = datasets['dumb2'] 23 # for some reason the R code fails with the dumb data 24 data = datasets['chirp_linear'] 25 26 27 clf = LARS(regression=True) 28 29 clf.train(data) 30 31 # prediction has to be almost perfect 32 # test with a correlation 33 pre = clf.predict(data.samples) 34 cor = pearsonr(pre, data.labels) 35 if cfg.getboolean('tests', 'labile', default='yes'): 36 self.failUnless(cor[0] > .8)3739 #data = datasets['dumb2'] 40 # for some reason the R code fails with the dumb data 41 data = datasets['chirp_linear'] 42 43 44 clf = LARS() 45 46 clf.train(data) 47 48 clf.states.enable('predictions') 49 50 p = clf.predict(data.samples) 51 52 self.failUnless((p == clf.predictions).all())53 5456 data = datasets['chirp_linear'] 57 58 # use LARS on binary problem 59 clf = LARS() 60 clf.train(data) 61 62 # now ask for the sensitivities WITHOUT having to pass the dataset 63 # again 64 sens = clf.getSensitivityAnalyzer(force_training=False)() 65 66 self.failUnless(sens.shape == (data.nfeatures,))70 return unittest.makeSuite(LARSTests)71 72 73 if __name__ == '__main__': 74 import runner 75
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Mon Apr 23 23:09:43 2012 | http://epydoc.sourceforge.net |