Home | Trees | Indices | Help |
|
---|
|
1 # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- 2 # vi: set ft=python sts=4 ts=4 sw=4 et: 3 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 4 # 5 # See COPYING file distributed along with the PyMVPA package for the 6 # copyright and license terms. 7 # 8 ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 9 """Unit tests for PyMVPA least angle regression (ENET) classifier""" 10 11 from mvpa import cfg 12 from mvpa.clfs.enet import ENET 13 from scipy.stats import pearsonr 14 from tests_warehouse import * 15 from mvpa.misc.data_generators import normalFeatureDataset 161865 6620 # not the perfect dataset with which to test, but 21 # it will do for now. 22 #data = datasets['dumb2'] 23 # for some reason the R code fails with the dumb data 24 data = datasets['chirp_linear'] 25 26 clf = ENET() 27 28 clf.train(data) 29 30 # prediction has to be almost perfect 31 # test with a correlation 32 pre = clf.predict(data.samples) 33 cor = pearsonr(pre, data.labels) 34 if cfg.getboolean('tests', 'labile', default='yes'): 35 self.failUnless(cor[0] > .8)3638 #data = datasets['dumb2'] 39 # for some reason the R code fails with the dumb data 40 data = datasets['chirp_linear'] 41 42 clf = ENET() 43 44 clf.train(data) 45 46 clf.states.enable('predictions') 47 48 p = clf.predict(data.samples) 49 50 self.failUnless((p == clf.predictions).all())51 5254 data = normalFeatureDataset(perlabel=10, nlabels=2, nfeatures=4) 55 56 # use ENET on binary problem 57 clf = ENET() 58 clf.train(data) 59 60 # now ask for the sensitivities WITHOUT having to pass the dataset 61 # again 62 sens = clf.getSensitivityAnalyzer(force_training=False)() 63 64 self.failUnless(sens.shape == (data.nfeatures,))68 return unittest.makeSuite(ENETTests)69 70 71 if __name__ == '__main__': 72 import runner 73
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Mon Apr 23 23:09:45 2012 | http://epydoc.sourceforge.net |