Home | Trees | Indices | Help |
|
---|
|
Sparse Multinomial Logistic Regression `Classifier`. This is an implementation of the SMLR algorithm published in :ref:`Krishnapuram et al., 2005 <KCF+05>` (2005, IEEE Transactions on Pattern Analysis and Machine Intelligence). Be sure to cite that article if you use this classifier for your work.
|
|||
Inherited from |
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
|
|||
Inherited from Inherited from Inherited from Inherited from |
|
|||
_clf_internals = ['smlr', 'linear', 'has_sensitivity', 'binary Describes some specifics about the classifier -- is that it is doing regression for instance.... |
|||
lm = Parameter(.1, min= 1e-10, allowedtype= 'float', doc= """T
|
|||
convergence_tol = Parameter(1e-3, min= 1e-10, max= 1.0, allowe
|
|||
resamp_decay = Parameter(0.5, allowedtype= 'float', min= 0.0,
|
|||
min_resamp = Parameter(0.001, allowedtype= 'float', min= 1e-10
|
|||
maxiter = Parameter(10000, allowedtype= 'int', min= 1, doc= ""
|
|||
has_bias = Parameter(True, allowedtype= 'bool', doc= """Whethe
|
|||
fit_all_weights = Parameter(True, allowedtype= 'bool', doc= ""
|
|||
implementation = Parameter(_DEFAULT_IMPLEMENTATION, allowedtyp
|
|||
seed = Parameter(None, allowedtype= 'None or int', doc= """See
|
|||
unsparsify = Parameter(False, allowedtype= 'bool', doc= """***
|
|||
std_to_keep = Parameter(2.0, allowedtype= 'float', doc= """Sta
|
|||
biases = property(lambda self: self.__biases)
|
|||
weights = property(lambda self: self.__weights)
|
|||
Inherited from Inherited from |
|
|||
Inherited from |
|
|
dataset (Dataset).
|
|
|
|
|
_clf_internalsDescribes some specifics about the classifier -- is that it is doing regression for instance....
|
lm
|
convergence_tol
|
resamp_decay
|
min_resamp
|
maxiter
|
has_bias
|
fit_all_weights
|
implementation
|
seed
|
unsparsify
|
std_to_keep
|
Home | Trees | Indices | Help |
|
---|
Generated by Epydoc 3.0.1 on Mon Apr 23 23:09:22 2012 | http://epydoc.sourceforge.net |