Package mvpa :: Package clfs :: Module meta :: Class MappedClassifier
[hide private]
[frames] | no frames]

Class MappedClassifier

source code


ProxyClassifier which uses some mapper prior training/testing.

MaskMapper can be used just a subset of features to train/classify. Having such classifier we can easily create a set of classifiers for BoostedClassifier, where each classifier operates on some set of features, e.g. set of best spheres from SearchLight, set of ROIs selected elsewhere. It would be different from simply applying whole mask over the dataset, since here initial decision is made by each classifier and then later on they vote for the final decision across the set of classifiers.

Nested Classes [hide private]

Inherited from misc.state.ClassWithCollections: __metaclass__

Instance Methods [hide private]
 
__init__(self, clf, mapper, **kwargs)
Initialize the instance
source code
 
_train(self, dataset)
Train MappedClassifier
source code
 
_predict(self, data)
Predict using MappedClassifier
source code
 
getSensitivityAnalyzer(self, slave_kwargs, **kwargs)
Return an appropriate SensitivityAnalyzer
source code

Inherited from ProxyClassifier: __repr__, summary, untrain

Inherited from base.Classifier: __str__, clone, isTrained, predict, repredict, retrain, train, trained

Inherited from base.Classifier (private): _getFeatureIds, _postpredict, _posttrain, _prepredict, _pretrain, _regressionIsBogus, _setRetrainable

Inherited from misc.state.ClassWithCollections: __getattribute__, __new__, __setattr__, reset

Inherited from object: __delattr__, __format__, __hash__, __reduce__, __reduce_ex__, __sizeof__, __subclasshook__

Class Variables [hide private]
  mapper = property(lambda x: x.__mapper, doc= "Used mapper")

Inherited from ProxyClassifier: clf

Inherited from base.Classifier: _DEV__doc__, feature_ids, predicting_time, predictions, regression, retrainable, trained_dataset, trained_labels, trained_nsamples, training_confusion, training_time, values

Inherited from base.Classifier (private): _clf_internals

Inherited from misc.state.ClassWithCollections: descr

Instance Variables [hide private]
  __mapper
mapper to help us our with prepping data to training/classification
Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

__init__(self, clf, mapper, **kwargs)
(Constructor)

source code 
Initialize the instance
Parameters:
  • clf (Classifier) - classifier based on which mask classifiers is created
  • mapper - whatever Mapper comes handy
Overrides: object.__init__

_train(self, dataset)

source code 
Train MappedClassifier
Overrides: base.Classifier._train

_predict(self, data)

source code 
Predict using MappedClassifier
Overrides: base.Classifier._predict

getSensitivityAnalyzer(self, slave_kwargs, **kwargs)

source code 
Return an appropriate SensitivityAnalyzer
Decorators:
  • @group_kwargs(prefixes= ['slave_'], passthrough= True)
Overrides: base.Classifier.getSensitivityAnalyzer