Package mvpa :: Package clfs :: Package libsvmc :: Module svm :: Class SVM
[hide private]
[frames] | no frames]

Class SVM

source code


Support Vector Machine Classifier.

This is a simple interface to the libSVM package.

Nested Classes [hide private]

Inherited from misc.state.ClassWithCollections: __metaclass__

Instance Methods [hide private]
 
__init__(self, kernel_type='linear', **kwargs)
Interface class to LIBSVM classifiers and regressions.
source code
 
_train(self, dataset)
Train SVM
source code
 
_predict(self, data)
Predict values for the data
source code
 
summary(self)
Provide quick summary over the SVM classifier
source code
 
untrain(self)
Untrain libsvm's SVM: forget the model
source code

Inherited from _svmbase._SVM: __repr__, getSensitivityAnalyzer

Inherited from _svmbase._SVM (private): _getDefaultC, _getDefaultGamma

Inherited from base.Classifier: __str__, clone, isTrained, predict, repredict, retrain, train, trained

Inherited from base.Classifier (private): _getFeatureIds, _postpredict, _posttrain, _prepredict, _pretrain, _regressionIsBogus, _setRetrainable

Inherited from misc.state.ClassWithCollections: __getattribute__, __new__, __setattr__, reset

Inherited from object: __delattr__, __format__, __hash__, __reduce__, __reduce_ex__, __sizeof__, __subclasshook__

Class Methods [hide private]

Inherited from _svmbase._SVM (private): _customizeDoc

Class Variables [hide private]
  probabilities = StateVariable(enabled= False, doc= "Estimates ...
  _KERNELS = {"linear":(svm.svmc.LINEAR, None, LinearSVMWeights)...
  _KNOWN_PARAMS = ['epsilon', 'probability', 'shrinking', 'weigh...
  _KNOWN_KERNEL_PARAMS = ['cache_size']
  _KNOWN_IMPLEMENTATIONS = {'C_SVC':(svm.svmc.C_SVC, ('C',), ('b...
  _clf_internals = _SVM._clf_internals+ ['libsvm']
Describes some specifics about the classifier -- is that it is doing regression for instance....
  model = property(fget= lambda self: self.__model)
Access to the SVM model.

Inherited from _svmbase._SVM (private): _ATTRIBUTE_COLLECTIONS, _SVM_PARAMS

Inherited from base.Classifier: _DEV__doc__, feature_ids, predicting_time, predictions, regression, retrainable, trained_dataset, trained_labels, trained_nsamples, training_confusion, training_time, values

Inherited from misc.state.ClassWithCollections: descr

Instance Variables [hide private]
  __model
Holds the trained SVM.
Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

__init__(self, kernel_type='linear', **kwargs)
(Constructor)

source code 

Interface class to LIBSVM classifiers and regressions.

Default implementation (C/nu/epsilon SVM) is chosen depending on the given parameters (C/nu/tube_epsilon).

Parameters:
  • kernel_type - String must be a valid key for cls._KERNELS
Overrides: object.__init__

_train(self, dataset)

source code 
Train SVM
Overrides: base.Classifier._train

_predict(self, data)

source code 
Predict values for the data
Overrides: base.Classifier._predict

summary(self)

source code 
Provide quick summary over the SVM classifier
Overrides: base.Classifier.summary

untrain(self)

source code 
Untrain libsvm's SVM: forget the model
Overrides: base.Classifier.untrain

Class Variable Details [hide private]

probabilities

Value:
StateVariable(enabled= False, doc= "Estimates of samples probabilities\
 as provided by LibSVM")

_KERNELS

Value:
{"linear":(svm.svmc.LINEAR, None, LinearSVMWeights), "rbf":(svm.svmc.R\
BF, ('gamma',), None), "poly":(svm.svmc.POLY, ('gamma', 'degree', 'coe\
f0'), None), "sigmoid":(svm.svmc.SIGMOID, ('gamma', 'coef0'), None),}

_KNOWN_PARAMS

Value:
['epsilon', 'probability', 'shrinking', 'weight_label', 'weight']

_KNOWN_IMPLEMENTATIONS

Value:
{'C_SVC':(svm.svmc.C_SVC, ('C',), ('binary', 'multiclass'), 'C-SVM cla\
ssification'), 'NU_SVC':(svm.svmc.NU_SVC, ('nu',), ('binary', 'multicl\
ass'), 'nu-SVM classification'), 'ONE_CLASS':(svm.svmc.ONE_CLASS, (), \
('oneclass',), 'one-class-SVM'), 'EPSILON_SVR':(svm.svmc.EPSILON_SVR, \
('C', 'tube_epsilon'), ('regression',), 'epsilon-SVM regression'), 'NU\
_SVR':(svm.svmc.NU_SVR, ('nu', 'tube_epsilon'), ('regression',), 'nu-S\
VM regression')}