Multivariate Pattern Analysis in Python |
from mvpa.misc.data_generators import noisy_2d_fx
from mvpa.mappers.pca import PCAMapper
from mvpa.mappers.svd import SVDMapper
from mvpa.mappers.ica import ICAMapper
from mvpa import cfg
import pylab as P
import numpy as N
center = [10, 20]
axis_range = 7
def plotProjDir(mproj):
p = mproj + N.array(center).T
P.plot([center[0], p[0,0]], [center[1], p[0,1]], hold=True)
P.plot([center[0], p[1,0]], [center[1], p[1,1]], hold=True)
mappers = {
'PCA': PCAMapper(),
'SVD': SVDMapper(),
'ICA': ICAMapper(),
}
datasets = [
noisy_2d_fx(100, lambda x: x, [lambda x: x],
center, noise_std=.5),
noisy_2d_fx(50, lambda x: x, [lambda x: x, lambda x: -x],
center, noise_std=.5),
noisy_2d_fx(50, lambda x: x, [lambda x: x, lambda x: 0],
center, noise_std=.5),
]
ndatasets = len(datasets)
nmappers = len(mappers.keys())
P.figure(figsize=(8,8))
fig = 1
for ds in datasets:
for mname, mapper in mappers.iteritems():
mapper.train(ds)
dproj = mapper.forward(ds.samples)
mproj = mapper.proj
print mproj
P.subplot(ndatasets, nmappers, fig)
if fig <= 3:
P.title(mname)
P.axis('equal')
P.scatter(ds.samples[:, 0],
ds.samples[:, 1],
s=30, c=(ds.labels) * 200)
plotProjDir(mproj)
fig += 1
if cfg.getboolean('examples', 'interactive', True):
P.show()
Output of the example:
See also
The full source code of this example is included in the PyMVPA source distribution (doc/examples/projections.py).