Package mvpa :: Package misc :: Module fx
[hide private]
[frames] | no frames]

Module fx

source code

Misc. functions (in the mathematical sense)
Functions [hide private]
 
singleGammaHRF(t, A=5.4, W=5.2, K=1.0)
Hemodynamic response function model.
source code
 
doubleGammaHRF(t, A1=5.4, W1=5.2, K1=1.0, A2=10.8, W2=7.35, K2=0.35)
Hemodynamic response function model.
source code
 
leastSqFit(fx, params, y, x=None, **kwargs)
Simple convenience wrapper around SciPy's optimize.leastsq.
source code

Imports: N


Function Details [hide private]

singleGammaHRF(t, A=5.4, W=5.2, K=1.0)

source code 

Hemodynamic response function model.

The version consists of a single gamma function (also see doubleGammaHRF()).

Parameters:
  • t, float - Time.
  • A, float - Time to peak.
  • W, float - Full-width at half-maximum.
  • K, float - Scaling factor.

doubleGammaHRF(t, A1=5.4, W1=5.2, K1=1.0, A2=10.8, W2=7.35, K2=0.35)

source code 

Hemodynamic response function model.

The version is using two gamma functions (also see singleGammaHRF()).

Parameters A, W and K exists individually for each of both gamma functions.

Parameters:
  • t, float - Time.
  • A, float - Time to peak.
  • W, float - Full-width at half-maximum.
  • K, float - Scaling factor.

leastSqFit(fx, params, y, x=None, **kwargs)

source code 

Simple convenience wrapper around SciPy's optimize.leastsq.

The advantage of using this wrapper instead of optimize.leastsq directly is, that it automatically constructs an appropriate error function and easily deals with 2d data arrays, i.e. each column with multiple values for the same function argument (x-value).

Returns:
tuple: as returned by scipy.optimize.leastsq
i.e. 2-tuple with list of final (fitted) parameters of fx and an integer value indicating success or failure of the fitting procedure (see leastsq docs for more information).

Parameters:

fx: functor
Function to be fitted to the data. It has to take a vector with function arguments (x-values) as the first argument, followed by an arbitrary number of (to be fitted) parameters.
params: sequence
Sequence of start values for all to be fitted parameters. During fitting all parameters in this sequences are passed to the function in the order in which they appear in this sequence.
y: 1d or 2d array
The data the function is fitted to. In the case of a 2d array, each column in the array is considered to be multiple observations or measurements of function values for the same x-value.
x: Corresponding function arguments (x-values) for each datapoint, i.e.
element in y or columns in y', in the case of `y being a 2d array. If x is not provided it will be generated by N.arange(m), where m is either the length of y or the number of columns in y, if y is a 2d array.
**kwargs:
All additonal keyword arguments are passed to fx.