Package mvpa :: Package measures :: Module pls
[hide private]
[frames] | no frames]

Source Code for Module mvpa.measures.pls

 1  # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- 
 2  # vi: set ft=python sts=4 ts=4 sw=4 et: 
 3  ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 
 4  # 
 5  #   See COPYING file distributed along with the PyMVPA package for the 
 6  #   copyright and license terms. 
 7  # 
 8  ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 
 9   
10  __docformat__ = 'restructuredtext' 
11   
12  import numpy as N 
13   
14  from mvpa.measures.base import FeaturewiseDatasetMeasure 
15   
16  if __debug__: 
17      from mvpa.base import debug 
18   
19   
20 -class PLS(FeaturewiseDatasetMeasure):
21 - def __init__(self, num_permutations=200, num_bootstraps=100, **kwargs):
22 # init base classes first 23 FeaturewiseDatasetMeasure.__init__(self, **kwargs) 24 25 # save the args for the analysis 26 self.num_permutations = num_permutations 27 self.num_bootstraps = num_bootstraps
28
29 - def _calc_pls(self,mat,labels):
30 # take mean within condition(label) and concat to make a 31 # condition by features matrix 32 X = [] 33 for ul in N.unique(labels): 34 X.append(mat[labels==ul].mean(axis=0)) 35 X = N.asarray(X) 36 37 # center each condition by subtracting the grand mean 38 X -= X.mean(axis=1)[:,N.newaxis].repeat(X.shape[1],axis=1) 39 40 # run SVD (checking to transpose if necessary) 41 U,s,Vh = N.linalg.svd(X, full_matrices=0)
42 43 # run procrust to reorder if necessary 44
45 - def _procrust():
46 pass
47
48 - def _call(self,dataset):
49 50 # 51 pass
52
53 -class TaskPLS(PLS):
54 pass
55