Package mvpa :: Package mappers :: Module svd
[hide private]
[frames] | no frames]

Source Code for Module mvpa.mappers.svd

 1  # emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- 
 2  # vi: set ft=python sts=4 ts=4 sw=4 et: 
 3  ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 
 4  # 
 5  #   See COPYING file distributed along with the PyMVPA package for the 
 6  #   copyright and license terms. 
 7  # 
 8  ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## 
 9  """Singular-value decomposition mapper""" 
10   
11  __docformat__ = 'restructuredtext' 
12   
13  import numpy as N 
14   
15  from mvpa.base.dochelpers import enhancedDocString 
16  from mvpa.mappers.base import ProjectionMapper 
17  from mvpa.featsel.helpers import ElementSelector 
18   
19  if __debug__: 
20      from mvpa.base import debug 
21   
22   
23 -class SVDMapper(ProjectionMapper):
24 """Mapper to project data onto SVD components estimated from some dataset. 25 """
26 - def __init__(self, **kwargs):
27 """Initialize the SVDMapper 28 29 :Parameters: 30 **kwargs: 31 All keyword arguments are passed to the ProjectionMapper 32 constructor. 33 34 Note, that for the 'selector' argument this class also supports 35 passing a `ElementSelector` instance, which will be used to 36 determine the to be selected features, based on the singular 37 values of each component. 38 """ 39 ProjectionMapper.__init__(self, **kwargs) 40 41 self._sv = None 42 """Singular values of the training matrix."""
43 44 __doc__ = enhancedDocString('SVDMapper', locals(), ProjectionMapper) 45 46
47 - def _train(self, dataset):
48 """Determine the projection matrix onto the SVD components from 49 a 2D samples x feature data matrix. 50 """ 51 X = N.asmatrix(dataset.samples) 52 X = self._demeanData(X) 53 54 # singular value decomposition 55 U, SV, Vh = N.linalg.svd(X, full_matrices=0) 56 57 # store the final matrix with the new basis vectors to project the 58 # features onto the SVD components. And store its .H right away to 59 # avoid computing it in forward() 60 self._proj = Vh.H 61 62 # also store singular values of all components 63 self._sv = SV 64 65 if __debug__: 66 debug("MAP", "SVD was done on %s and obtained %d SVs " % 67 (dataset, len(SV)) + " (%d non-0, max=%f)" % 68 (len(SV.nonzero()), SV[0])) 69 # .norm might be somewhat expensive to compute 70 if "MAP_" in debug.active: 71 debug("MAP_", "Mixing matrix has %s shape and norm=%f" % 72 (self._proj.shape, N.linalg.norm(self._proj)))
73 74
75 - def selectOut(self, outIds):
76 """Choose a subset of SVD components (and remove all others).""" 77 # handle ElementSelector operating on SV (base class has no idea about) 78 # XXX think about more generic interface, where some 'measure' is assigned 79 # per each projection dimension, like in _sv in case of SVD. 80 # May be selector could be parametrized with an instance + attribute as literal 81 # so later on it could extract necessary values? 82 if isinstance(self._selector, ElementSelector): 83 ProjectionMapper.selectOut(self, self._selector(self._sv)) 84 else: 85 ProjectionMapper.selectOut(self, outIds)
86
87 - def _computeRecon(self):
88 """Since singular vectors are orthonormal, sufficient to take hermitian 89 """ 90 return self._proj.H
91 92 sv = property(fget=lambda self: self._sv, doc="Singular values")
93