Package mvpa :: Package datasets :: Module meta :: Class MetaDataset
[hide private]
[frames] | no frames]

Class MetaDataset

source code


Dataset container

The class is useful to combine several Datasets with different origin and type and bind them together. Such a combined dataset can then by used to e.g. pass it to a classifier.

MetaDataset does not permanently duplicate data stored in the dataset it contains. The combined samples matrix is build on demand and samples attribute access is redirected to the first dataset in the container.

Currently operations other than samples or feature selection are not fully supported, e.g. passing a MetaDataset to detrend() will initially result in a detrended MetaDataset, but the combined and detrended samples matrix will be lost after the next call to selectSamples() or selectFeatures(), which freshly pulls samples from all datasets in the container.

Instance Methods [hide private]
 
__init__(self, datasets)
Initialize dataset instance
source code
 
rebuildSamples(self)
Update the combined samples matrix from all underlying datasets.
source code
 
__getattr__(self, name)
Implemented to redirect access to underlying datasets.
source code
 
selectFeatures(self, ids, sort=True)
Do feature selection on all underlying datasets at once.
source code
 
applyMapper(self, *args, **kwargs)
Apply a mapper on all underlying datasets.
source code
 
selectSamples(self, *args, **kwargs)
Select samples from all underlying datasets at once.
source code
 
permuteLabels(self, *args, **kwargs)
Toggle label permutation.
source code
 
getRandomSamples(self, nperlabel)
Return a MetaDataset with a random subset of samples.
source code
 
getNSamples(self)
Currently available number of samples.
source code
 
getNFeatures(self)
Number of features per sample.
source code
 
setSamplesDType(self, dtype)
Set the data type of the samples array.
source code
 
mapReverse(self, val)
Perform reverse mapping
source code

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __repr__, __setattr__, __sizeof__, __str__, __subclasshook__

Class Variables [hide private]
  nsamples = property(fget= getNSamples)
  nfeatures = property(fget= getNFeatures)
  datasets = property(fget= lambda self: self.__datasets)
Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

__init__(self, datasets)
(Constructor)

source code 
Initialize dataset instance
Overrides: object.__init__

Parameters: datasets : list

mapReverse(self, val)

source code 
Perform reverse mapping
Returns:
List of results per each used mapper and the corresponding part of the provided val.