Package mvpa :: Package clfs :: Module meta :: Class MaximalVote
[hide private]
[frames] | no frames]

Class MaximalVote

source code


Provides a decision using maximal vote rule
Nested Classes [hide private]

Inherited from misc.state.ClassWithCollections: __metaclass__

Instance Methods [hide private]
 
__init__(self)
XXX Might get a parameter to use raw decision values if voting is not unambigous (ie two classes have equal number of votes
source code
 
__call__(self, clfs, dataset)
Actuall callable - perform voting
source code

Inherited from PredictionsCombiner: train

Inherited from misc.state.ClassWithCollections: __getattribute__, __new__, __repr__, __setattr__, __str__, reset

Inherited from object: __delattr__, __format__, __hash__, __reduce__, __reduce_ex__, __sizeof__, __subclasshook__

Class Variables [hide private]
  predictions = StateVariable(enabled= True, doc= "Voted predict...
  all_label_counts = StateVariable(enabled= False, doc= "Counts ...

Inherited from misc.state.ClassWithCollections: _DEV__doc__, descr

Properties [hide private]

Inherited from object: __class__

Method Details [hide private]

__init__(self)
(Constructor)

source code 
XXX Might get a parameter to use raw decision values if voting is not unambigous (ie two classes have equal number of votes
Overrides: object.__init__

__call__(self, clfs, dataset)
(Call operator)

source code 

Actuall callable - perform voting

Extended functionality which might not be needed actually: Since BinaryClassifier might return a list of possible predictions (not just a single one), we should consider all of those

MaximalVote doesn't care about dataset itself

Parameters:
  • clfs - List of classifiers to combine. Has to be classifiers (not pure predictions), since combiner might use some other state variables (value's) instead of pure prediction's
Overrides: PredictionsCombiner.__call__

Class Variable Details [hide private]

predictions

Value:
StateVariable(enabled= True, doc= "Voted predictions")

all_label_counts

Value:
StateVariable(enabled= False, doc= "Counts across classifiers for each\
 label/sample")